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Effective criteria are presented for testing the sufficient condition of optimal 
pursuit time (time of first absorption) for linear differential games that satisfy 
the conditions of local convexity. The class of problems for which the suffici- 
ent condition is also the necessary one is indicated. 

1. Let the linear problem of pursuit in an n -dimensional Euclidean space R be de- 
fined by 

a) the linear vector differential equation 

dz / dt = cz - u f v (1. I) 
where C is a constant square matrix of order n ; u = u (t) E P and v = u (t) E Q 
are vector functions measurable for t >, 0 , which are called the controls of players (the 
pursuer and the pursued, respectively), and P C R and Q C R are convex compacta; 
and 

b) the terminal set M which can be represented in the form M = iM0 f IF,, 
where 1Mi is a linear subspace of space R and W,, is some compact convex set in space 
L and is the orthogonal complement of M0 in R . 

We assume that conditions 1- 3 defined in [l] are satisfied for problem (1.1). The 
notation used here conforms to that in [l - 31, We denote the sets a@ (r) P and 
n@ (rf Q by P (r) and Q (r) , respectively, 

Note. The formula at the bottom of p* 208 of [Z] contains an error ( *) . It should 
read 

2. Definition. We say that a total sweep [3] takes place on set E c [0, + 03) , 

if for any r E E the set w fr) = P (r) 2% Q (F) is nonempty and 
1~’ (7) i- Q (4 = P fr) (2.1) 

(see [4, S] for the operation over convex sets). 
LetcpEKand r>O. Wedenoteby 

(2.2) 

the basis spacing of sets P (r), Q (r) and 1~ (r), respectively, considered in L (see [5]). 

*) Editor’s Note. In the English edition this formula appears at the top of page 
196, PMM Vol. 37, NE 2, 1973. 
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We set 
20 (r, 9) = x@ Mu (r, rpf - v (r, cp)] 

Lemma 1. For a complete sweep of set El it is necessary and sufficient for the 
inequality 

(Cp*[W (r, Cp) - W (r, ‘$)I) >, 0 (2.5) 

to be satisfied for all r E E, ‘p E K and 11) E K , 
P r 0 0 f , If a total sweep takes place on set E , then [5] 

a (r, 9) -t- hQ @.I ‘p) = h, (r* @t GEE, cp~f( (2.6) 

We denote by w* (r, cp) E w (r) the vector which yields maximum in (2.4). With the 
Use Of (2.1) and (2.6) we find that vector UP (F, cp) + JCCD (r) u (r, cp) lies in P (F) and 

yields the maXimUm in (2.2). Hence by virtue of condition 1 in [l] we have W* (F, cp) + 

=@ fr) u (F, rpf = JC@ (r) u (r, cp) and,consequently, LU (r, (c) = w* (r, cp) E UI (r). Simi- 
larly, w (r, $1 E w (~1. Hence (2.5) is a corollary of (2.4) and of the definition of 

uf* (r, CF). 
Conversely, let us assume that (2.5) is satisfied and consider the set 

UJ* (F) = k&w (r, cp) 

We denote its convex envelope by w (r) = co w* (rf and the basis spacing of that enve- 

lope by h (r, rpl (see (2.4) ). We shall prove that 

h (r, Cp) = (Cp* W (r, 9)) (2.7) 

In fact, for any w E t(r (r) there exist Y + 1 vectors [6] &, . . ., +'v+l E K and numbers 

al, . . ., o,+l E [O, II such that 

w = alw (r, %) i- . . . + a,+l 20 fr, *,+& 1 = a~ + I I . i %+l 

Setting in formula (2.5) 9 = qpi, i = 1, . . ., Y + 1, multiplying it by ait and adding 
the derived inequalities, we obtain 

(cp-[w (r, qp) - r0I) > 0 (2.6) 

Since w (r, q) E w (r), formula (2. ?i’) is proved. Furthermore, since (2.6) follows 
from (2, ‘I), Theorem 12 in [‘I] yields (2.1) and by virtue of Statement 2 in [4] w fr) = 

P (F) x 0 (r). This proves that a total sweep takes place on set E . 

N o t e . In conformity with the definition of the basis spacing and Theorem 12 in [‘I] 

mentioned above, it is necessary and sufficient for vector w to lie in set w (r), if ine- 

quality (2.8) is to be satisfied for all cp E K. 

3. Condition A. We say that condition A is satisfied on set E C [O, -f- ~1 if 
for each vector u E P there exists vector V (u) E Q such that for all r E E the inclu- 

sion 
J-Co (F) [U - v (U)] E W (r) (3.1) 

is achieved. 
Let T be an arbitrary integer. It was shown in [3] that the satisfaction of condition 

A along the segment [O, T] is a sufficient condition of global optimal time 2’ (z) 6 2’ 

of the upper layer Cl]. 
N o t e . If the selection of vector v (~)is in accordance with the procedure in [6] so as 

to conform to condition A, the additional requirement for the measurability of related 

controls (see [S]) is automatically satisfied. 
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Throughout the following analysis we assume that condition 4 in [S] for dim P -: 

dim Q = Y. is satisfied for problem (1. l), and that the linear subspaces Mp and Mo 
and vectors P and q are such that 

P*=P--pCM,, dimMp=v, Q*=Q-qcMp, dimMg-v 

We denote by np and ZQ the operators of orthogonal projections for R on M,. and MQ , 
respectively. Let us consider the linear image f (r) = no (r) np : M, 3 L. Since the 
set P* (r) = f (rf P* derived from the set P (r) by a shift by vector n. @ (rf p, has a 
nonempty interior in L. (Lemma 1 in El]), hence f (r) is a mapping “onto’* but, owing 
to dim M, = dim L,. f (r)is a homeomorphism, For similar reasons the mapping g (r)= 
n@(r) nQ : kfQ -_j .Z is a linear homeomorphism “onto”. Hence their inverse images 
f-1 (r) : L -3 kf, and g-1 (r) : L -_$ M q are also linear homeomorphisms “onto” [8], 

We denote by F (r) : L --f Mp and G (r) : I, -_$ &fQ the linear images conjugate of 
j’ (r) and g fr) , respectively, i, e. such that satisfy equalities 

(F (r) CC+ y) = (z-f (4 y), (G (r) 2-z) = (x*g (4 z) 

forany zEL,yEMp and z E MQ. Then F (r) and G (r) are homeomorphisms “onto” 
[811 and F (r) = xi@* (r) SC, and G (r) = no@* (r) z , and consequently, their inverse 
images 2-1 (r) : M, -+ L and G-1 (r) : MQ -+ L are also linear horneorno~~~ “onto”. 

If the bases are fixed in each subspace L, M, and Mo , the matrices of each of the 
above images are nondegenerate analytic matrices of order Y in the interval (0, 4 CQ) 
whose elements are analytic functions of parameter r- in (0, -I- 00) . below we assume 
these matrices to have been conveniently chosen, and shall deal with matrices instead 
of images. 

We denote by U* (r, rp) and u* (r, rp) the vectors for which the expressions(rp* Q (rj u*), 
U* E P* and (9-m (r) u*), v* E Q* attain their respective maxima. It can be readily 
verified that such vectors are unique for any r > 0 and cpE X , and that u* o*, tp) = 

u (r, 9) - p and v* (r, cp) = 0 (r, cp) - 9. 
We denote by d the boundary of the convex set in the plane that contains it. 
Note. Foranyfixed 3>0 theimage u(O,cp):K+Mp+~ isthehomeomor- 

phism of sphere K onto aP and v ((3, rp) is the homeomorph~m of K ontc SQ. In fact, 
since f (r) is a homeomorphism “onto”, every inner point of P* converts to an inner point 
of set p* (r) = f (r) P*,and every point of the boundary aP* converts to a boundarypoint 

of set P* (4. Since for cp + II ap* lr) = iKsIm (rj u+ (r, vI) 

anci (P In@ (r) u* (r, cp) - nQ, (r) U* (r, I#)]) > O,(condi~on 1 and Lemma 1 in [I]), 
hence XQ, (r) u* (r, rp) is a homeomorphism of K onto aP* (r) and, consequently, 

ap* = UK 1-l (r) ncD (r) u* (r, cp) = I& u* (r , cp) (3.2) 

and u* (r, (p) is a homeomorphism of K onto aP *. In conformity with the definition 
of boundary aP = 3P* + p [6J1this yields 

aP=$Ku(rA 

and u (r, cp) is the homeomorphism of K onto aP. The second part of this remark is 
proved in a similar manner, 

We denote by Kp and KQ the unit spheres in M, and MQ , respectively. Formula (3.2) 
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shows that aP* is a locally convex surface, Denoting by u* ($), 9 E KP the point of 
surface ap* at which the external normal to aP+ is equal to $,, then for any r > 0, cp E 
K and$\I,EKp 

u* (r, cp) = u* ( 1 9 U* ($7) = u* r, 
J-l tr) 9 

IWr)W > 
(3.3) 

Similarly, by denoting by u* (IJJ), 9 E Kg the point of surface aQ* at which $ is the 

external normal to aQ*, we obtain 

(3.4) 

Lemma 2. Condition A issatisfied in set E then and only then when for any u E 
aP there exists V (u) E Q such that for any r E E (3.1) is satisfied. To prove this 
lemma it is sufficient to repeat verbatim the reasoning preser E d in [S], 

Lemma 3. If complete sweeping takes place on set E , condition A is satisfied on 

E , then and only then when there exists, 0 E E such that fbr any cp E K and r E E the 
inclusion 

ncD (r) y (6, cp) E w (r) (3.5) 

is achieved. Here and in what follows y (r, q) = u (r, cp) - u (r, cp) . In fact, for fixed 
6 E E and in conformity with Note 3 the image 1~ (0, cp) is the homeomorphism of 

sphere K onto G’. Hence by virtue of Lemma 2 inclusion (3.5) ensures the satisfaction 
of condition A. 

Conversely, if condition A is satisfied, then by virtue of (3.1) 

nQ, (0) u (6, cp) = n@ (6) v (U (6, CP)) + W, w E w (e) (3.6) 

Using equalities (2.6) and (2.2) - (2.4) and the definition of vector u (e, TV,) [l] and the 
scalar multiplication of (3.6) by (p, we obtain 

v (U (6, 91) = u (6, 9) (3.7) 

which together with (3.1) proves (3.5). 

Lemma 4. When conditions 1 - 4 are satisfied for problem (1.1) and’s total sweep 
takes place in the half-interval (0, 2’1 , then to have condition A satisfied in 

(0, T] it is necessary and sufficient if condition A is satisfied on every subset I C (0, 2’1, 

which has in (0, Tl a limit point. The necessity of this condition is evident. Let us prove 
that it is sufficient, 

For fixed t f I and any reI, cp,and $,EK wehave(see(2.8)and (3.5)) 

(9. m(r) (lu (r, 9) - v (r7 911 - Iu (TV 9) - u (f, @I)) >, 0 (3.8) 

Setting ‘or = F-l (r) F @)cp and $ = qt / 1 cpr i, in accordance with (3.3) and (3.4) we 
obtain 

u(r, ~)=u+(F(r)~/IF(r)SI)+p=u+(F(~)cp/lF(~)~I)+p= 
u (z, rp) v (z, 9) = u (r, $4, Ipr = h (r) Ip / I h (r) Ip 1 

Where 

h (r) = G-l (r) G (z) F-1 (T) F (r) : L + L (3.9) 

is a nondegenerate linear transformation of space L. 
Substituting the obtained expressions into formula (3.8) and using the local convexity 

of surface n@ (r) u (r, K) (Lemma 1 in Cl]), we obtain O>(+ @ (r) [u (r, +) - u (r, $4) > 
Ca (9. [$ - %I) > 0. This shows that 4,. 3 IJJ and, consequently, for any cp E K ,(since* p 
is arbitrary) 

h (4 4 = I h (4 $ I Q 
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It follows from this that 1 [ h (r) 1c, 1 - h (r) is, as in [a], independent of 9. 
As pointed out above, h (r) is a matrix whose elements are analytic functions of para- 

meter F E (0, + m), h (4 = h (r) E and r E I, i.e. all elements that do not lie on 
the principal diagonal of matrix h (r) vanish at all points of set / which shows that 

they are identically zeros. The diagonal elements of matrix h(r) are the same on set I, 
hence they are the same for all r. Thus 

h(r) E h (r) E, r E (0, + w) (3.10) 

Hence it follows from formula (3.9) that the equality G (‘c) F-l (t) = h (r) G (F) F-1 (r) 

holds for all F E (0, + 00) . Passing to conjugate transformations from this we obtain 

B = f-1 (z) g (t) E h (r) f--l (r)g (r) 

Since h (r) is a matrix which is nondegenerate for any r E (0, + 00) and h (t) = 1, 
hence h (r) > 0 for 0 < r < + 03. Setting a (r) = 1 / h (r), we finally obtain 

g (r) = a (r)‘f (r) B, O<F< +m (3.11) 

with B : MQ -_j M, an nondegenerate matrix. 

If’ r is any arbitrary number in the interval (0, 7’1 , then, setting 

e = r, ,W = n@ (r) y (0, cp) and cpr = F-1 (r) F (r) cp,, 

and using (3.3), (3.4) and (3.10) and Lemma 1, we obtain for any -+i E K the inequal- 

ity ($*. ]w (r, **) - 4 = W*. [w (r, 11*) - w (F, cpr / I q+ I )I) > 0 

which by virtue of Note 2 yields (3.5). Hence, in conformity with Lemma 3 condition A 
is satisfied in (0, T] . The lemma is proved. 

Lemma 5. If a complete sweep takes place in (0, T] and condition A is not satis- 

fied, then for any 0 E [0, T] there exists a subset K (0) C K, which consists of a finite 

number of cross sections of sphere Ii by subspaces of dimension < Y - 1 (the emptiness 

of set K (0) is not excluded) such that for any cp E li \ K (tt) there exists a subset 
E (cp, U) c (0, T], which has no limit points in (0, T] such that 

n@ (r) y (0, cp) @ ‘0 (1.) 
(3.12) 

for all r E IO, 7’1 \ E (cp, 0). 

Pro o f. Let r > 0 and ‘p E K. Inclusion (3.5) is achieved then and only then when 

for any 9 E K the inequality (3.8) is valid(t := 3) is assumed). From this, as from the 

proof of Lemma 4, we have ~-1 (r) G (8) cp -.= 7 (r‘ (p) F-1 (F) F (0) cpI where y (r, rp) > 0 

or what is the same 
H (r) ‘P -= Y (r, cp) ‘P (3.13) 

where H (F) = F-1 (z) F (r) G-l (r) G (T) : L --) L is the nondegenerate linear transforma- 
tion of space L. 

We assume that ‘p E N (f3) , then and only then whenequality(3.13) issatisfied with res- 
pect to r on some subset D (q) of the interval (0, I ) which has in (0, 2’1 a limit point. 
If the reference in L is chosen so that its first basis vector is vector cp, then only the 
first element of the first column of matrix H (r) is nonzero for all r E D (cp). The ele- 
ments of matrix H (r) are analytic functions of parameter r, hence all elements of the 
first column of matrix H (r), except the first, are identically zeros. This shows that equa- 
lity (3.13) is satisfied for all r E (0, -t m). 
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If among the vectors from N (0) there are no Y linearly independent vectors, the set 
iv (81 lies in some (v - ~)-dime~ional subspace L (ti1) ot space L. We then set li (0) = 

L (0) (I Ic. If,however, qi, . . ., rpv E N (0) form the basis iu L; ii.en matrix H (r) in 
that basis is for all + > o of the diagonal form 

H(r) = diag(hl (r), . . ., 1, (4) (3.14) 

where bi (r) = y (r, cpi) are analytic functions of parameter r. 
Let ii < . * * < ip be an arbitrary subset of set {I, 2, . . . , Y}.. We denote by L (iI, 

. f .) ip) the linear envelope of vectors (PiiT . . ., Tip and set 

Let cp + K (0). We shall show that there exists a subset E (cp, 0) c (0, T] which has 
no limit points in (0, TIP and such that (3.12) is satisfied for any r E (a, T] \ E (cp, e) , 
We prove this by ~on~adiction. Let us assume that D (tpf c (0, T] has a limit point in 
(0, T] and is such that (3.5i is satisfied for all r E D (q) , then equality (3.13) is satis- 
fied in D (cp) and, consequently, cp E N (0). Hence by distributing vector ‘p over the 

basis (~1, . . ., ‘pv E K (O), we obtain 

‘p = a$ + . . . + a%& 

v * 

~fh(rs cPffcpi = r@., cp)cp = ff Wcp = C f&Wltpi. O<r<+‘= 

i=1 i=l 

which implies that for each i = 1, . . ., v either,ai = 0, or hi (r) z-y (r, rp). 
Let us show that there exists an i,, such that czzo := 0. This implies that g, E L (1, . . -7 

i. - 1, i, -t 1, - . ., v) n I-i c K (e), which is a contradiction that proves the lemma. 
In fact,if ~2 #0, i = 1, . . ., T, all functions hi (r’i are the same,i.e. hi (r) f 1 (i-), 

i = 1, . . ., l’,O<r<+ ~0. 
Hence by virtue of (3.14) (1 / 1 (r))H (r) = H,. H, -= E, where 

E{, -= (2 / h (r))F-1 (z)F (r) and M, rz G-i (r) G (z). 

This means that I‘r, = N,-’ and,consequently, (1 I h (r))h (r) = H,.H, = E. 
We have obtained formula (3.10) which ensures that condition A is satisfied in (0, T] 

(see the proof of Lemma 4). 

4, Let us assume that the condition of complete sweep is not satisfied in the half- 
open interval (0, T] or, if the complete sweep takes place, condition A is not satisfied. 

For any 0 E (0, T], r EZ (0, 7‘1 and cp EE K we denote by 0 (r, 0, cp) the set of all vec- 
toIs II, E K for which 

P (r, 9, 0, ulf - (**n@ 09 IY (r, *) - :I (0, ~11) < 0 (4.1) 

Note that for certain sets of r, 8, cp the set 0 (r, 0, cp) is empty. Lemmas 1 and 5 
ensure the nonemptiness of set 0 (r, 9, 9) for at least one set of FY 0, Cp. 

We assume that for problem (1.1) the following conditions are satisfied, 
Condition B. There exists 0 E (0, T), r E (0, T), P + 0, rp E K, 9 6%~ 0 (F, 8, 

d and z. E R such that 

li. (20, t1<0. tCS 
]o, a) u (0, g, e <r 

[O, r) I_ (r. e), r< e (4.2) 

Jr@ (0) 20 = w (e, cp), n@ (r) Z. = w (F, +) 
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Theorem 1. If condition B is satisfied for problem (1. 1), there exists in R a point 
z* at which the time T (z*) < T is nonoptimaL 

Proof. Weset a=@*(B)cp, S=@*(r)* and b=la[p--l~Ia,andshall 
show that b+:O (4.3) 
by contradiction. If b = 0,then fl = ca, where c = I j3 I/ ) CC I and, consequently, 
(p U) f c (a. u) for any u E P. Hence the maxima 

(4.4) 

are reached on one and the same vector u. CE P which is unique by virtue of condition 1 
in [l]. From this we have u (6, cp) = u,, = u (r, 4). For the same reason v (6, cp) = v (r, 

W and, consequently, the left-hand side of inequality (4.1) vanishes, which is a contra- 
diction. 

It follows from fo~ul~ (4.1) - (4.3) that 20 is a “singul~’ point when 6 < r hence 
by Theorem 2 in [Z] there exists in R a point a;, at which the time 7’ \z;f is nonoptimal. 
Furthermore, the construction itself of the proof of that theorem yields the inequality 
2’ (z*) < r < 2’. Thus the theorem is proved for the case of 6 < r. 

The c as e of r < 6. Let us prove a more general statement, 
Lemma 7, Letz,ER,kbeanaturalnumber,andO<r,<...<~k<@<~ 

be such that 
lTXJ (rifzo = W (pi7 $i)t i = 1, . . ., k, 3X@ (8)2, = W (6, 9) (4.5) 

A+ (zcl7 t) < 6, t E lo, rl) u . . . f,j (r;, ri+j) . . . u (rk, 6) (4.6) 

pi = P (riq Qi* 6, up) < 0, i = 1, . . ., k (4.7) 

Then there exists in R a point z* at which the time 2’ (z*) Q T is nonoptimal. 
Proof. Let e,>O besosmallthatfor O<e<e, wehave z=r,--e>Oand 

TE=O+s<T. Weset 

z -_a,(--e) z~+‘*(s)v(e+zlV)dJ] L 
Then 

t 1 
0 

h(Zu 3d (cP@* s)*{wtt, q(t, e))-m(t-E)Zo- 

z 

s nb, tt - 8 + ‘1 Y te f s* 9) $8 
0 

= h (ZO, t - 8) - g (t, e), e < 8 $ 2’ 

where rp (t, E) = $, (zo, t - e) 

Since ‘p (t, a) --, qr when t-+riand e-+.O,andsince /a--tfEfq(e-+O Uni- 

formly with respect to z E [t - E, t] and t E [e, Tl when e --, 0 , hence owing to the 
continuity of ail functions in the left-hand side of inequality (4. ‘I), there exists a 6, 0 < 
6 < min {eo, rl / 3, (6 - rk) / 5;7$~+~ - ri) I 5}, such that for all 

fED,=Jliri-- 28, ri + 251 

and all e E (0, 8) the inequality &? (t, E) < 0 is satisfied. This together with (4.6) 
yields 

h (zt, t) < 0, t E Do, a E (0, 6) (4.6) 
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Let T, = T (z,). We shall show that 

T,-+% a-++~ (4.9) 
First, we note that n@ (0 f ~$2, = W (8 + e, cp), so that T, B 6 + e (see Cl)). Hence, 

if (4.9) does not apply, there exist a number y, 0 < y < 9, and a sequence ei --4 +O, 
such that lim T, = 7 and 

i-‘ca h (zip Ti) = 0, i=i, z,... (4.10) 

where ZI = aEi and Ti = T (zi) . 

Since zi + zO, hence, owing to the continuity of function h (z, t) I h (z,, v) = 0 , and 
there exists a natural number m (1 < m 6 k) such that y = F~ and, consequently, the 
inclusions ai E (0, 6) and Ti E Do are achieved for all reasonable great i , However, 
this means that (4.10) contradicts (4.8). 

Let us prove that for fairly small a the necessary condition of optimum (Theorem 2 
in El]) is not satisfied at point xL I and this will conclude the proof of the theorem and 
Lemma 7. We prove it by contradiction. Let for any E > 0 

I (Ze, z) = il (2,, 7) > 0 (4.11) 

2C 

35=@(2ef SC-- 

f 1 

@(---s)Y(~C--s,tpCf~~ t cp,=rp(z,) 

0 
1 

Setting 9, = 11, +,, T) , after some transformations (using the notation r = rl and 
9 = &), we obtain 

0 > Z (213, T) = al + aa + as + a4 > a8 + a3 + a4 (4.12) 

where al = (rl,* [W 6, gc) - w (T, $)I) > o (Lemma 2 in Cl]) and 

r 

az==- 9,. ( f Q(s)y(s, 4) ds , as= - 
r-c ) ( s 11,. c @ (r+e-s) y (TC-s, cp) ds) 

0 

2s 

a4= $e 
( s 

~O.+e--s)y(~,-ss, cp,)ds 
0 

Dividing inexact (4.12) termwise by e > 0 ,passing to limit e -+ 0, and using relation- 
ships I#, + 9, TC -_, &and (4.9) with its corollaries (Pa + cp, when e + 0 and, also, the 
Uniform COntinUity Of fUnCtiOnS u (r, cp) and u (F, q) in [a, T] x K (see [2]), we obtain 

(9.Q (r)Iy (9, cp) - y (r, WI) d 0 (4.13) 

which contradicts (4.5). 
N 0 t e , Xt follows from the proof of the theorem that for the time T (9) of the upper 

layer to be globally optimal it ts necessary that the inequality (4.13) is satisfied at any 
point a,, E R that satisfies condition (4.2). 

6 Let us assume that in addition to conditions 1 - 4 the following condition (see [Z], 
Sect. 5) is satisfied for problem (I.. 1) : 

nCP(r)u=nQ,(r)p+f(r}Au*, 24*=24-p, uEP 

no (r) v = YCQ, (r) q + g (r) Bu*, v* = v - q, u E Q 

where A : Mp-+ L and B : Mq -.+ L are linear homeomorphisms ” onto”, f (r) and g (r) 
are analytic functions that are positive in some half-open interval (0, T], vectors P 
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and g are defined in Sect. 3, Ap* = BQ* = s, w. = 1s with 1 > 0 and 1 > 0, when 
f (r) < g (r) in some right-hand half-neighborhood of zero. 

In that case ([2]) 

u* (“3 cp) = U (cp), U* (r, rp) E k’ (cp), AU (cp) = q 

BV (cp) = ‘p, w (b 
where 

cp) = h (t)cp + v (t) 

t t 

h(t)=z+S(i(r)-gg.(r))dr, ‘J’(t)=n:S@(r)(p-q)dr 

0 0 

We assume that h (t) > 0 and t E (0, T). 

Theorem 2. Let problem (1.1) under conditions of this Section be such that one 

of the two sets of three (f (r), g (r), f’ (r)) or {f (r), g (r), g’ (r)} is linearly independent 
in [0, 2’1. We then have the following alternatives: either condition A is satisfied in 

(0, T] , i.e. 
(5.1) 

and then the time T (z) f T is optimum [2, 9, lo], or (5.1) is not satisfied, i.e. con- 
dition A does not apply and there exists in 8 a point Z* at which the time T (z*) < T 

is not 0ptimaL 
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